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1.  Introduction

In studying the multi-modal nuclear fission, fermium nuclei
are very important from the viewpoint of magicity of the
daughter nuclei since they decay into two proton-magic (Z = 50)
nuclei Sn in the mass-symmetric fission.  In particular, the
nucleus 264Fm decays into two identical double-magic (Z = 50,
N = 82) nuclei 132Sn.

It was found that there is a strong isotope dependence in the
fragment mass distribution of the spontaneous fission of fermium
nuclei; a mass-symmetric peak is observed for 258,259Fm, while
mass-asymmetric peaks are obtained for 254,256,257Fm.1−6 For the
thermal neutron induced fission of 255Fm, which should be
compared with the spontaneous fission of 256Fm, a mass-
symmetric peak is observed in the total mass distribution; the
fragment mass distribution depends also on the excitation
energy.  For the thermal neutron induced fission of 255Fm, the
authors of Reference 1 cut the total kinetic energy (TKE) distri-
bution into several energy bins and studied the mass distribu-
tion for each bin.  They obtained a sharp mass-symmetric
distribution for high TKE bins (TKE > 220 MeV) while they
obtained mass-asymmetric distribution for low TKE bins (TKE
< 220 MeV).  Namely, the total mass distribution is composed
of at least two components: a mass-symmetric component with
higher TKE and a mass-asymmetric component with lower TKE.
For the spontaneous fission of 258Fm, the authors of Reference 5
fitted the TKE distribution by two Gaussians and found that the
high TKE component (TKE > 220 MeV) corresponds to a sharp
mass-symmetric distribution while the low TKE one (TKE <
220 MeV) corresponds to a broad mass-symmetric distribu-
tion.  In the both cases of the thermal neutron induced fission
of 255Fm and the spontaneous fission of 258Fm, the fission
events with the high TKE were found to form a narrow mass-
symmetric distribution.

The mass distribution and the TKE distribution consist of
several components and these components correspond to
different nuclear fission modes.1−11 Such a phenomenon is
observed not only for fermium nuclei but also for other

nuclei.7−11 It is known that only the mass-symmetric fission
path exists in the potential energy surface (PES) given by the
liquid drop model (LDM), so the shell effect plays a crucial
role for the multi-modal nuclear fission.

In order to understand the multi-modal nuclear fission,
many theoretical efforts have been done so far.  One is the
method conjecturing the mass distribution from the PES and
another is dynamical calculation.  The former has given an
explanation for the existence of several fission paths for
264Fm.12, 13 This approach has been applied to many nuclei, but
dynamical effects, such as the dissipation, are not included.
Dynamical calculations using the multi-dimensional Langevin
equation have been applied at high excitation energies and they
explain the experimental data such as pre-scission neutron
multiplicity.14 Since the shell correction energy exists at low
excitation energies, e.g. at energies lower than 30 MeV, the
inclusion of the shell correction energy is very important in the
dynamical calculation of the multi-modal nuclear fission.  This
has been pointed out for the fission of trans-actinide nuclei15

and for the fusion-fission mechanism of the superheavy
nuclei.16 In this paper the dynamical calculation with the
potential energy including the shell effects is performed to
discuss the multi-modal nuclear fission of fermium isotopes.

Section 2 is a reminder of the multi-dimensional Langevin
equation and the potential energy.  Calculated results are
presented in sec. 3. Summary is given in sec. 4.

2.  Methods

Dynamical approach based on the multi-dimensional
Langevin equation has been successfully applied to nuclear
reactions, i.e., fission and fusion-fission.14−18 In this study, we
apply this approach to investigate the multi-modal nuclear
fission in the fermium nuclei.  The time evolution of the
fission process in the multi-dimensional deformation space is
traced starting from the ground state of the fissioning nucleus
via saddle points to various scission configurations.  

The multi-dimensional Langevin equation has the following
form;
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= (m−1)ij pj,

= – – (m−1)jk pj pk – γ ij(m−1)jk pk + gij Rj (t),

where qi denotes a coordinate in the deformation space and pi

is its conjugate momentum.  The summation from 1 to n over
the repeated indices is assumed with n being the number of
collective degrees of freedom.  V(q) is the potential energy and
mij(q) and γ ij(q) are the shape-dependent collective inertia and
dissipation tensors, respectively.  The hydrodynamical inertia
tensor is adopted with the Werner-Wheeler approximation for
the velocity field.19 The dissipation tensor is calculated with
the one-body type wall-and-window formula.20 The normal-
ized random force Ri(t) is assumed to be a white noise, i.e.,

〈Ri(t) = 0,  〈Ri(t1)Rj(t2) = 2δ ijδ(t1 – t2),

The strength of the random force gij is given by Σkgikgjk = Tγ ij,
where T is the temperature of the compound nucleus.  It is
calculated from the excitation energy EX as EX = aT2, where a
is the level density parameter for a spherical nucleus.  The
potential energy is calculated using the macroscopic-micro-
scopic method.  The macroscopic part of the energy is calcu-
lated with the Yukawa plus exponential model21 and the
microscopic part is calculated with the Strutinsky shell correc-
tion method22, 23 using the two-center harmonic oscillator
single-particle potential.24−27 The potential energy is expressed
as a sum of the two terms,

V(q, EX) = EMacro(q) + EMicro(q, EX).

The macroscopic energy consists of the nuclear potential
energy ENuclear and the Coulomb energy ECoulomb.21 The micro-
scopic energy is calculated as a sum of the shell correction
energy ∆Es and the pairing correlation correction energy
∆Epc.28 The microscopic energy depends on the excitation
energy (temperature) since the occupation probability of the
single particle levels depends on the excitation energy.  The
excitation energy dependence of the microscopic energy is
introduced in the following form based on Ignatyuk’s sugges-
tion;29

EMicro(q, EX) = EMicro(q, EX = 0)exp(–EX/Ed),

where EX is the excitation energy and Ed is the shell damping
energy.  We take Ed as 20.0 MeV in this study. 

The nuclear shape is expressed by three parameters.  We

treat RC.M. (the distance between the centers of mass of future
fission fragments), δ (the deformation of the fission frag-
ments), and A1 (the mass number of a fission fragment with A2

being the mass number of the other fission fragment) as the
three collective parameters.  In order to obtain the deformation
of the two fission fragments by a single parameter δ, we intro-
duce the following relation for the ratio of the two axes ai and
bi (see Figure 1):

= (i = 1, 2),

where A is the mass number of the fissioning nucleus.  Figures
2 and 3 show various nuclear shapes that can be described with
the three collective parameters.  Figure 2 shows the nuclear
shapes in the mass-symmetric fission and Figure 3 shows the
nuclear shapes for the mass-asymmetric division with δ = 0.0. 

In the present study, we used TWOCTR of two-center shell
model code to calculate the potential energy surface.26, 27, 30

The origin of the potential energy is set so that the macro-
scopic energy for the spherical shape vanishes.  We do not take
account of the effect of the angular momentum or the particle
evaporation in this study. 
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Figure 2. Various nuclear shapes in the deformation space for the
mass-symmetric fission of 264Fm.  The abscissa denotes the distance
between the centers of mass of future fission fragments and the ordi-
nate the deformation parameter δ.  R is the radius of the parent
nucleus. The solid line shows the scission line.

Figure 3. Nuclear shapes in the deformation space with δ = 0.0 for
264Fm.  The abscissa denotes the distance between the centers of mass
of future fission fragments and the ordinate the mass number of the
heavy fission fragment.  R is the radius of the parent nucleus.  The
solid line shows the scission line.

a2 a1b2 b1

Figure 1. Illustration of ai and bi that determine the fragment defor-
mation.



3.  Results

First, we investigate the fission of 264Fm.  Figures 4 and 5
show the mass distribution and the TKE distribution of the
fission fragments at the excitation energy EX =10.0 MeV.  One
observes a single peak for the mass distribution and three
peaks for the TKE distribution.  Since the fission fragments in
the mass-symmetric fission of 264Fm are double-magic nuclei,
it is expected that the scission configuration is compact.  The
TKE of the fission fragments essentially depends on the
distance between the centers of mass of fission fragments.
Thus the TKE of the fission fragments depends sensitively on
the compactness of the scission configuration.  The mass-
symmetric compact scission configuration corresponds to the
highest TKE.  It is expected that the other two TKE peaks
correspond to more elongated scission configurations.

As is shown in Figure 2, the compactness of the scission
configuration is governed by the fragment deformation para-
meter δ.  Therefore, we pay special attention to the deforma-
tion parameter δ at the scission configuration.  In Figure 6, we
show the distribution of the deformation parameter δ at the
scission configuration.  From the figure, we observe that this
distribution consists of three components similarly to the TKE
distribution shown in Figure 5.  It is expected that there is a
correlation between the structures appearing in Figures 5 and
6.  We classify the fission events into three components
according to the values of the deformation parameter δ at the
scission configuration; Component I corresponds to δ < 0.04,
Component II corresponds to 0.04 < δ < 0.26 and Component
III corresponds to δ > 0.26.  In Figure 7, the TKE distribution

shown in Figure 5 is decomposed into these three components.
It is seen that Component I corresponds to the events that
belong to the highest TKE peak, Component III to the lowest
TKE peak, and Component II lies in-between.  As for the TKE
distribution, we can thus understand that the structure seen in
Figure 5 corresponds to the classification in the δ-space.

The next problem is the mass distribution of each compo-
nent classified by the value of δ at the scission.  In Figure 8,
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Figure 6. Distribution of the deformation parameter δ at the scission
for the fission of 264Fm at the excitation energy EX = 10.0 MeV.

Figure 4. Distribution of the mass number of the fission fragments
for the fission of 264Fm at the excitation energy EX = 10.0 MeV.

Figure 5. Distribution of the TKE of the fission fragments for the
fission of 264Fm at the excitation energy EX = 10.0 MeV.

Figure 8. Decomposition of the mass distribution according to the
three components of the deformation parameter δ.  The meaning of
each symbol is the same as that in Figure 7.

Figure 7. Decomposition of the TKE distribution according to the
three components of the deformation parameter δ.  Open circles
denote Component I, solid upward triangles Component II, and open
downward triangles Component III.  Solid squares denote the sum of
the three components.



the total mass distribution is decomposed into the three compo-
nents.  It is found that Component I and Component III corre-
spond to the mass-symmetric fission and Component II to the
mass-asymmetric fission. 

In order to study the origin of two components for the mass-
symmetric peak and one mass-asymmetric peak, we investigate
the PES.  First, Figure 9 shows the PES for the mass-symmetric
fission of 264Fm.  One can see that the ground state locates at
RC.M./2R ~ 0.45, δ ~ 0.10 (V ~ −0.70 MeV).  It is found that
there are two fission paths; one leads to Component I and the
other to Component III.  The path for Component I has only
one saddle point (RC.M./2R ~ 0.50, δ ~ 0.25, V ~ 3.00 MeV),
while that for Component III has the second minimum
(RC.M./2R ~ 0.62, δ ~ 0.30, V ~ −1.00 MeV) and the second
saddle point (RC.M./2R ~ 0.70, δ ~ 0.30, V ~ −0.10 MeV).
Therefore, the yield of Component I is expected to be greater
than that of Component III.

Next, Figure 10 shows the PES in the case of δ = 0.135
which corresponds to the deformation peak of Component II.
We find the mass-asymmetric second saddle point (RC.M./2R ~
0.70, AH ~ 147), while we find only a mass-symmetric fission
valley after the second saddle.  It is difficult to predict where
the peak of the mass distribution will locate only from this

PES.  Thus we need the dynamical calculation.  In comparison,
Figure 11 shows the PES in the case of δ = −0.11 which corre-
sponds to the deformation peak of Component I.  In this case,
one finds the mass-symmetric saddle point and the mass-
symmetric fission valley. 

Zhao et al. investigated the systematics of the TKE in the
actinide region.10, 11 They assumed that the TKE is equal to the
Coulomb energy at the scission configuration for point
charges, namely TKE = Z1Z2e2/D, and defined the shape elon-
gation at the scission point by β = D/(R1+R2), where R1,2 are
the radii of fission fragments.  They showed that there are
mainly two types of scission configuration: a mass-asymmetric
(AH = 140) configuration with β = 1.53 and a mass-symmetric
elongated configuration with β = 1.65.  Additionally, there is a
mass-symmetric compact configuration with β = 1.33 in the
heavy region where the mass number of the fissioning nucleus
is nearly equal to 260.  In order to compare our results with
this experimental systematics, we calculate the peak values and
the widths of the mass number and TKE distributions for each
component from the Gaussian fitting.  The results are listed in
Table 1.  One finds that the shape elongation β of Component I
corresponds to the mass-symmetric compact configuration,
that of Component II to the mass-asymmetric (AH = 140)
configuration and that of Component III to the mass-
symmetric elongated configuration.  However, the mass
number of the heavier fragment in the mass-asymmetry mode
is predicted to be 147 and is different from the experimental
value AH = 140.  Furthermore, our shape elongation β is
slightly bigger than that of the experimental systematics for the
mass-symmetric elongated configuration.

The fermium nucleus 264Fm has not been studied experimen-
tally, but other fermium isotopes 256,258Fm have been studied.
A remarkable isotope dependence is observed experimentally;
in the spontaneous fission, the mass-symmetric peak is
observed for 258Fm, while the mass-asymmetric peak is
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Figure 10. The contour plot of the PES in the case of δ = 0.135 for
264Fm.  The abscissa denotes the distance between the centers of mass
of future fission fragments and the ordinate the mass number of a
fission fragment.  The solid line shows the mass-symmetric division.
R is the radius of the fissioning nucleus.  Arrows show expected fission
paths. Figure 11. The same as Figure 10, but for the case of δ = −0.11.

Figure 9. The contour plot of the PES for the mass-symmetric fission
of 264Fm.  The abscissa denotes the distance between the centers of
mass of future fission fragments and the ordinate the deformation pa-
rameter δ.  R is the radius of the parent nucleus.  The first and the
second saddle points are marked by X’s.  Arrows show expected
fission paths.

<A1> σ (A1)
<TKE> σ(TKE) β/ MeV / MeV

Component I 131.5 6.80 232.1 6.30 1.31

Component II 147.0 9.10 200.8 10.4 1.50

Component III 132.3 34.2 171.7 15.0 1.77

<A1>: the peak mass number, σ(A1): the variance of the mass
number, <TKE>: the peak TKE, σ(TKE): the variance of the
TKE, β: the shape elongation deduced from <A1> and <TKE>.

TABLE 1: Peak Values and Widths of the Mass and TKE
Distributions Obtained from the Gaussian Fitting to Each
Component



observed for 256Fm.1−6 We calculate the mass distributions for
256,258Fm in the same manner as 264Fm.  We compare the mass
distributions of 256,258,264Fm in Figure 12.  When we compare
the full width at half maximum (FWHM) for each mass distri-
bution, this value increases from 264Fm (FWHM = 25) to 258Fm
(FWHM = 30) and then further to 256Fm (FWHM = 33).  We
did not find the drastic isotope dependence that was found in
the spontaneous fission.  It should be noted that our calculation
has been performed for the excitation energy EX = 10.0 MeV
and that mass-symmetric peaks have been observed in the
thermal neutron induced fission of both 255Fm and 257Fm.

4.  Summary

Multi-modal nuclear fission of the fermium nuclei 256,258,264Fm
at the low excitation energy was dynamically investigated.  We
payed special attention to the deformation parameter δ which
essentially controls the scission configuration.  We classified
the fission events in three components according to the values
of the deformation parameter δ at the scission configuration:
Component I (δ < 0.04), Component II (0.04 < δ < 0.26) and
Component III (δ > 0.26).  The mass and TKE distributions are
well classified by the δ decomposition.  It was found that the
shape elongation β which is deduced from the peak mass
number and the peak TKE for each component is consistent
with Zhao’s experimental systematics.  As a conclusion, we
emphasize the importance of the deformation parameter δ at
the scission configuration in the dynamical calculation.  We
are planning to extend this calculation to the four-dimensional
one, where the deformation of the two fission fragments is
expressed not by a single parameter δ but by two independent
parameters δ1 and δ2. 
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Figure 12. Isotope dependence of the mass distribution for the fission
of 256,258,264Fm at the excitation energy EX = 10.0 MeV.  The solid
squares denote the mass distribution of the fission fragments of 256Fm,
open circles that of 258Fm, and open triangles that of 264Fm.




