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Atomic and Molecular Structure Calculations for Superheavy Elements
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A first prediction of the chemistry of superheavy elements has been given 30 years ago using many-electron rel-
ativistic atomic structure calculations in the quality of that time.1 The first relativistic molecular calculation for a
system with a transactinide element was published in 1977.2 Since then relativistic atomic and molecular structure
calculations have been considerably improved and applied to many atoms and molecules. In this review we try to
outline the general theory and the development of the quality of such calculations with less and less approximations
as well as better and better numerical methods and higher accuracy. But even if one has quite accurate total energies,
quantities like effective charges, overlap populations or radii of the outermost wavefunctions are still a very valuable
information for an effective prediction of the chemical behavior of the superheavy elements.

1. Introduction

The structure of the heavy elements has attracted much inter-
est since the earlier days of quantum mechanics. It was soon re-
alized that the chemical behavior is a result of the structure of the
outer valence electrons of the atoms. The discovery and avail-
ability of the actinides and transactinides in physical and chem-
ical research started this field in the mid forties. Theoretical
methods became available in the early sixties which allowed to
predict the electronic structure for very heavy elements. Nowa-
days, the analysis of many physical and chemical experiments
as well as a series of computations has lead to a considerable
understanding of these elements. Today the predictive power is
so enhanced that we are relatively sure about the magnitude of
most of the physical quantities and of the chemical behavior of
these elements, which are either just observed on a single atom
basis (Z = 107 to 112) or will hopefully be observed in the region
of the superheavy elements in the vicinity of the nuclear charge
114 in the future.

2. General Theory

We all believe in the Schrödinger- (or Dirac-) equation

Ĥ |Ψ〉 = −i
∂
∂t

|Ψ〉 (1a)

respectively (in the time-independent form)

Ĥ |Ψ〉 = E |Ψ〉 . (1b)

In order to solve this equation, one has to follow various steps:
— At first one has to define the Hamiltonian which one would

like to solve.
— Secondly, one has to separate the nuclear and electronic coor-

dinates with the help of the Born-Oppenheimer approxima-
tion and

— thirdly, choose an ansatz for the wavefunction Ψ.
2.1. Choice of the Hamiltonian. As a first step in all “nor-

mal” calculations only the Coulomb interaction between all
charged particles usually is taken into account.
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As the next step the interaction between the magnetic mo-
ments of the spins and orbital angular momenta of the electrons
(and nuclei) are taken care of (usually in the form of the Breit
interaction). Finally in the most advanced form the interaction
due to quantum electrodynamical effects will be considered.

2.2. Separation of Nuclear and Electronic Coordinates.
The Born-Oppenheimer ansatz for the total wavefunction

Ψ(R, r) = ψe(R, r) ·ψN,e(R) (3)

allows to separate eq 1 in two equations. (R stands for the nu-
clear coordinates, r for the electronic coordinates, the index e is
the electronic quantum number, and the index N is the nuclear
quantum number.)

∑
i

∇2
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2m
ψe(R, r)+ [Ee(r)−Vi j −Vαi]ψe(R, r) = 0 , (4)

∑
α
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M
ψN,e(R)+ [E −Ee(r)−Vαβ]ψN,e(R) = 0 . (5)

Equation 4 is the basis for Quantum Chemistry, and eq 5 is
the equation for the nuclear motion which is the basis for
Molecular Dynamics.

2.3. Choice of a Wavefunction. The simplest approach is a
product of single particle functions ψ = Πi ϕi which is, however,
not antisymmetric (Hartree approximation). Another possibility
is the ansatz of a Slater determinant
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This is an antisymmetric ansatz, and the Pauli principle is auto-
matically included. If the ansatz 6 is plugged into eq 4, one gets
after a variational procedure the Hartree-Fock equations

−∇2
i

2m
− Z

r
+

[ n

∑
k=1

Z
φ∗

k (�r ′
i) φk(�r ′

j)
e2

(�r−�r ′)
d�r ′

]
φi(�r)

Coulomb Part,

−
n

∑
k=1

[Z
φ∗

k (�r ′) φi(�r ′)
e2

|�r−�r ′|d�r ′
]

φk(�r) = εiφi(�r) (7)

Exchange Part.

Equation 7 is solved iteratively in a self-consistent field (SCF)
way. The wavefunctions in eq 7 have to be specified as atomic
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TABLE 1: Results from atomic structure calculations for the elements 104–108.

Property Rf Db Sg Bh Hs
MCDF CCSD

Ground state 6d7s27p 6d27s2 6d37s2 6d47s2 6d57s2 6d67s2

(90%) (91%)
Excited state 6d27s2 6d7s27p 6d27s27p 6d37s27p 6d47s27p 6d57s27p
Excitation energy / eV 0.5 0.3 1.9 1.64 0.79 0.63
Ionization energy / eV 6.5 6.01 6.89 7.10 7.7 7.6

For the references see table 2 in Reference 3.

orbitals (AO) in case of an atom or molecular orbitals (MO) in
case of a molecule, which themselves are usually constructed in
a linear combination of atomic orbitals (LCAO)

φk =
n

∑
i=1

cikχi .

The resulting matrix equations with the coefficient matrix c,
the overlap matrix S and the Fock matrix F are often called
Roothaan LCAO-MO-SCF method

F c = E S c .

These equations are the basis for most practical computational
methods in Quantum Chemistry.

2.4. Choice of a Basis Set. In all of these calculations usu-
ally the single particle wavefunctions φi are expanded in either
Gaussian-type orbitals (GTO)

χuvw = N xu yv zw exp(−αr2)

where u, v, w are the non-negative integers and α is the positive
orbital exponent, or
Slater-type orbitals (STO)

χnlm(r,θ,ϕ) = N · rn∗−1 exp(−Z∗

n∗
r
a0

) Ylm(θ,ϕ)

which do not represent the inner orbitals well because they do
not have the right number of nodes, or numerical atomic orbitals
which are generated from numerical atomic structure calcula-
tions. These orbitals have the correct number of nodes and show
a correct asymptotic behavior.

2.5. Correlation Energy. The problem is that Hartree-
Fock takes into account the interelectronic repulsion only in an
average way. To account for this deficiency one has to include
the so-called “correlation energy”. There are various methods to
account for this:

One possible method is the configuration interaction (CI).
Here (in principle) every Slater determinant ψk which can be
constructed from the occupied and unoccupied Hartree-Fock or-
bitals contributes to the total wavefunction

Ψ =
∞
∑
k=1

ck ψk .

Depending on the fact if only single (S), double (D), triple
(T), etc. excited configurations are included, the method is called
CIS, CISD, CISDT, etc.

In the multi-configuration self-consistent field (MCSCF)
method a limited number of configuration state functions are
used, but not only the expansion coefficients ck are determined.
In addition, the single particle wavefunctions φu which construct
the Slater determinants ψk are optimized .

Another possibility to treat correlation is the many-body
perturbation theory (MBPT). In the Møller-Plesset theory (MP)
the Hamiltonian is split into the unperturbed Hartree-Fock oper-
ator H(0) and the perturbed rest H(1)

Ĥ = Ĥ(0) + Ĥ(1) .

The most sophisticated description is the coupled-cluster
(CC) theory. Other typical quantum chemical methods are e.g.
the zero differential overlap approximation, NDDO, CNDO,
or any kind of Hückel approximation including the extended
Hückel theory. All these methods shall not be discussed here.

2.6. Density Functional Approach. Slater had the idea to
use the exchange term in the Hartree-Fock equations as an ef-
fective potential. The exchange of a free electron gas is given as
(α = 1).

VXα = −3α(3ρ/8π)1/3,

where α is an adjustable parameter, and X refers to the ex-
change. Thus the one-electron energies and wavefunctions are
determined by solving

(−∇2 +Vc +VXα

)
φi = εi φi .

In principle, this method is also exact. It is based on the
Hohenberg-Kohn theorem which shows that the ground state
density n corresponds uniquely to a given external potential. In
general the total energy of a system is

E [n] = T [n]+E ext [n]+E h[n]+E xc[n]+Eαβ ,

where T [n] is the kinetic energy, E ext [n] the electron-nucleus in-
teraction, E h[n] the direct electron-electron interaction, E xc[n]
the exchange-correlation part of the electron-electron interac-
tion and Eαβ the nucleus-nucleus interaction energy. The prob-
lem with this method is that one does not know the exact E xc[n],
but only approximations.

3. Relativistic Atomic Calculations

First relativistic atomic structure calculations for atoms be-
came available at the end of the 60s. They led to a first qualita-
tive discussion of the structure of the valence electrons in very
heavy elements. However, the quality of these results was only
of limited overall predictive power. Later, the development of
high-speed computers as well as relativistic atomic codes made
it possible to approach the goal of an improved understanding of
these very heavy elements with Z ≥ 100. A summary is given in
the review Reference 3.

An example for these calculations is presented in Table 1
which summarizes atomic structure calculations for the ele-
ments 104–108.

4. Relativistic Molecular Calculations

A new period in the study of elements started when it became
possible to perform calculations of small molecules which con-
tain one or more atoms with a charge number above Z = 100.
To our knowledge, the first application with the newly devel-
oped discrete variational method was a calculation of (110)F6 in
1978.13 In the 80s this method has been extended considerably.
During the last years, calculations of improved wave functions
became possible even for more complex molecules. Since then
a relatively large number of already complex molecules of all
elements have been calculated. In order to compare the quality
of the various methods and approximations discussed here one
should compare those for the same molecule. Unfortunately,
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TABLE 2: Results from various calculations of diatomic Au2.

Ref. Method Re / a.u. De / eV ωe / cm−1

4 P-HFS 4.62 2.52 201
5 SRPP-HF 4.93 0.83 160
5 SRPP-MP2 4.64 2.53 205
5 SRPP-CCSD 4.74 2.00 185
5 SRPP-CCSD (T) 4.73 2.22 182
6 cp-CCSD (T) 4.70 2.19 187
7 CASSCF-MRSDCI 2.00
8 ZORA-GGA 4.76 2.26 174
9 ZORA-GGA 4.75 2.31 178

10 ZORA-GGAI 4.76 2.53 177
10 ZORA-GGA2 4.76 2.26 174
11 ZORA-GGA 4.75 2.33 183
our 4-comp. RGGA 4.88 2.50 169
12 exp 4.67 2.29 191

there is no such system besides the diatomic Au2 where we sum-
marize the binding energy De, bond distance Re, and vibrational
frequency ωe from several calculations. A few references are
given in Table 2.

5. Conclusion

Many features of the transactinide elements are now relatively
well understood. The statement that relativistic effects play a
dominant role in the prediction of physical quantities and chem-
ical behavior is now well established. Extended calculations will
certainly change details of the predictions for specific elements
in the future, but not the gross structure. The quality of molec-

ular calculations has still to be improved, but for a number of
elements one already knows large details of their chemical be-
havior.
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