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The Multi-dimensional Langevin Approach to the Description of Fusion-fission Reactions
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The two stage approach to the description of fusion-fission reactions is suggested. On each stage (fusion or fission)
the tree-dimensional Langevin equation for the variables describing the shape of nuclear system is solved. The
results obtained on the first stage are used as the input data for description of fission dynamics. In this way it turned
out possible to describe for the reaction 18O + 208Pb simultaneously both fusion and fission cross sections, the energy
and mass distribution of fission fragments, the probability of the evaporation residue formation, the dependence of
pre-fission neutron multiplicities on the fragment mass number. From the results of the computations it follows that
the observed quantities of the fission process can be reproduced without formation of compound nucleus. At the
same time the duration of the process is so large that events of quasi-fission and “true” fission of compound nucleus
can not be distinguished.

1. Introduction

For many years the fusion and fission processes were studied
separately. This was mainly due to the fact that the relatively
light ions were used in fusion reaction and it was assumed that
the ions are absorbed very fast by the target nucleus. With the
increasing weight of the ions the picture changes considerably.1

Now, when the Uranium ions are used as the projectile the de-
scription of fission independently from the fusion stage is not
justified.

One of the examples of such approach is the concept of di-
nuclear system (DNS).2–5 In this model it is assumed that after
the touching point both target and projectile keep their “indi-
viduality” — spherical shape and shell structure. The entrance
channel in this model is taken into account through by the prob-
ability of the formation of DNS which is calculated on the basis
of optical model. This is the only memory about entrance chan-
nel. So the initial stage and the further evolution of the system
is carried out within very different approaches.

More consistent are the approaches developed in Refer-
ences 6, 7. The parameters of the entrance channel (the de-
pendence of the compound nucleus formation probability on
the angular moment)8 and the further evolution of the compos-
ite system6 are considered within the same approach. However
whereas the DNS-approach starts from the contact of two nu-
clei in References 6,7 this moment is missing completely. Once
the probability of compound nucleus is known, the evolution of
the fissioning system starts in References 6, 7 from the ground
state. Thus the “pre-history” is ignored completely. On this way
the considerable part of the information on systems evolution is
lost.

In present work an attempt is undertaken to consider both
the approaching phase and the fission within the same frame-
work, namely by solving the Langevin equations for the vari-
ables which specify the shape of composite system. As an ex-
ample we will consider the reaction 18O + 208Pb for which the
detailed experimental information is available. Note also that
both nuclei are spherical.

2. The Model

The description of the fusion-fission reactions will be car-
ried out in two stages. Both stages are described by three-
dimensional Langevin equation. On the first stage the approach-
ing phase is considered. The information obtained on this step
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is used as the input data for describing the further evolution
of the composite system. Unfortunately, at present there is no
shape parametrization which would describe well both divided
and compact shapes. Thus on both stages different parametriza-
tion will be used. On each stage the evolution of large number
of collisions is considered. Each of them would be referred as
“trajectory” in the space of deformation parameters.

2.1. Equations of Motion. To describe the dynamics of the
fusion-fission reaction we will use the Langevin equations. For
the fusion stage we will solve the equations9:
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Here r is the distance between centers of mass of collid-
ing nuclei, pr — conjugated momentum, m — the reduced
mass, V (r,�α) — the interaction energy. The latter includes the
Coulomb and nuclear parts. The nuclear part VGK was calcu-
lated according to Gross and Kalinowski,12 the K j

i is the tensor
of friction parameters. The angular momentum L is expressed in
units h̄. The second couple of eq 1 describes the shape evolution
of colliding nuclei. The quantities αi and πi are the collective
variables describing the shape of nucleus and conjugated mo-
mentum correspondingly. The index i attains the values “target”
or “projectile”, the Di and Ci are the friction and mass parame-
ters with respect to αi. Both Di and Ci were defined within liquid
drop model. The quantity ξ describes the random force acting
upon the system and leading to the fluctuations. The magnitude
of the fluctuations depends on the excitation energy of the sys-
tem, so at initial moment it is equal to zero. During the approach
the part of the kinetic energy turns into heat due to the friction
in the system. Consequently the magnitude of fluctuations gets
different from zero and increases with time.

The system of eq 1 does not include the equation for angular
momentum L of the system. It was assumed to be a constant for
each trajectory.

For the mono system the Langevin equations are of the
form13:

dqi

dt
= Mi j pj ,
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where qi are the collective variables fixing the shape of mono
system and pi are the conjugated momenta. The γ jk and µjk =
||mjk||−1 are the friction and mass parameters. For the com-
pact shapes these parameters were computed within the linear
response approach.16,17 The explicit expressions and numerical
results for γ jk and mjk can be found in Reference 18.

2.2. Collective Co-ordinates. On the approach phase the
projectile and target get deformed both by Coulomb and nuclear
interaction in order to reduce the interaction energy. So, one
should account for the deformation of the projectile and target.
In the present work we will take into account only the most im-
portant quadrupole deformation. I.e., the shape of nuclear sur-
face is parametrized by

Ri(x) = λ−1
i Ri

0(1+αi
2P2(x)).

Here R0 is the radius of the sphere with equal volume, index
i denote “target” or “projectile”, the parameter αi

2 defines the
deformation of the projectile or the target, λi is the normaliza-
tion factor (defined from the volume conservation condition).
It is assumed that on the approaching stage the symmetry axis
of projectile and target coincide (Figure 1), i.e. the rotation of
ions is not taken into account. This approximation seems quite
reasonable, though it may lead to some reduction of the fusion
cross section.10

On the second stage, when the projectile and target formed
a bound system, its shape is parametrized in terms of Cassini
ovaloids,11 i.e. by the profile function ρs(z) which is given para-
metrically as
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Here s is the square of distance from the focus of Cassini ovals
to the center of co-ordinate system. The surface of the (axi-
ally symmetric) nucleus is obtained by the rotation of the profile
function ρs(z) around z-axis. The shape of the surface is fixed
by the deformation parameters ε and αm. Near the scission it
is convenient to use instead of ε as an independent variable the
parameter α which relates to (ε,αm) as
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The advantage of parameter α is due to the fact that for a shape
with vanishing neck α = 1 for any value of αm. So, α = 0 cor-
responds to spherical shape and α = 1 correspond to the shape
with zero neck.

When we switch from two separated ions to a bound system,
we conserve the full elongation and the mass asymmetry of the
system. Namely, the ratio of the volumes of left and right part
of the system (which are divided the zero neck) are the same
as the one for colliding ions. And the sum of radiuses of ions
along the symmetry axis is equal to the elongation of the whole

Figure 1. The dependence of the potential energy (solid curve, left
axis) and the mean deformations α2 of the target (squares) and projec-
tile (circles, right axis) versus the distance r between the projectile and
target. The shapes of the ions at the initial point (right) and near the
touching point (left) are also shown.

system. The parameters of the compact system were defined
numerically for each trajectory.

In the present work we use three deformation parameters both
for bound and separated shapes. In the first case these are the
distance r between the centers of mass of target and projectile
and the parameters αi of their (quadrupole) deformation. In
the second case — the deformation parameters α,α1, and α4

which fix the total elongation of the system, mass asymmetry,
and thickness of the neck.

2.3. The Potential Energy. The potential energy includes
the Coulomb, rotational, and nuclear parts. Below only the last
part is shown. The nuclear interaction of two ions in the entrance
channel was described by means of Gross-Kalinowski potential
VGK ,12

VGK = 1
2
(V12 +V21),
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Rd(αi,x) = (1+αiP2(x))(1.12A1/3
i −0.86A−1/3

i ) [fm],

with ρ0 = 0.17 fm−3, ad = 0.54 fm. The parameters of the po-
tential Vp and ap were chosen according to Reference 14. In the
calculations the mash 100× 41× 41 in the deformation space
was used. The r-dependence of the potential energy for L = 0 is
shown in Figure 1.

The potential energy for the compact shape was computed by
the shell correction method20 as the sum of liquid-drop part and
the shell correction. The damping of the shell correction with
growing excitation energy was taken into account according to
Reference 15.

Figure 2 shows the map of the potential energy in α,α1 co-
ordinates (the parameter α4 which defines the thickness of the
neck is fixed equal to −0.18). One can see that with growing
temperature the potential energy gets more smooth and more
close to the liquid-drop deformation energy. The two fission val-
ley merge into one. Thus, depending on the excitation energy,
the mass distribution of the fission fragments could be symmet-
ric or not.
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Figure 2. The potential energy of 226Th in α,α1 co-ordinates for α4 =
−0.18. The contour maps are given for three values of the temperature
T . The vertical line marks the value of α1 at which the stability of the
nucleus with respect to scission is lost.

3. The Entrance Phase

The potential energy of spherical colliding ions is shown in
Figure 1 by solid line. Of course, the potential energy would
change due to the deformation of ions. The mean deformations
of projectile (circles) and target (squares) are shown in Figure 1
too. The value of deformation is indicated on the right y-axis.
One can see that far away from the barrier parameter of defor-
mation α2 is zero or very slightly positive. Near the barrier α2

gets negative, i.e. both projectile and target get oblate. This lead
to the increase of Coulomb interaction. The smaller is distance
r between centers of mass the larger is the deformation. Con-
trary to the case of spherical nuclei, the touching of deformed
surfaces practically can not be reached. The evolution of a tra-
jectory in entrance channel was stopped when the distance be-
tween the surfaces of ions was smaller than half of the sum of
the diffuseness parameters ap (see eq 5) of projectile and target.
The cross section obtained in this way was identified with the
touching cross section. This values are shown by open triangles
in Figure 4.

By solving eq 1 we obtain the information on the entrance
channel: the probability of the touching, the distribution of the
excitation energy E∗

int at the touching point and deformations
of the fragments at the touching point. These distributions are
shown in Figure 3. The top panel shows the distribution of the
intrinsic excitation energy E∗

int at the touching point on the ini-
tial angular momentum for the initial energy Elab = 90 MeV. One
can see that for each angular momentum the excitation energy is
distributed around some mean value. With growing angular mo-
mentum, the mean value of the excitation energy goes to zero
due to the redistribution of the initial energy between intrinsic
excitation and rotation.

The middle panel of Figure 3 shows the probability to reach
the touching point as the function of initial angular momentum.
The open squares correspond to the initial energy 90 MeV, the
filled triangles — to the energy 78 MeV. In both cases, the prob-
ability decreases from its maximal value to zero quite smoothly
due to the presence of random force in eq 1. The absolute value
of the probability for these two cases differs very much from
each other. In the second case, when Elab = 78 MeV the proba-
bility to reach the touching point is very small even for head-on
collisions. In this case Elab energy is almost equal to the fusion
barrier.

The bottom panel shows the distribution of the deformation
of the ions at the touching point. The projectile deformation

Figure 3. The distribution of the excitation energy (top) of the frag-
ments at the touching, and the touching probability (middle) versus ini-
tial angular momentum; bottom — the deformations of the projectile
and target at the touching point.

Figure 4. The dependence of the touching cross section (open up-
triangles), fusion (open squares) and fission (open circles) cross sec-
tions on the c.m. energy of the colliding ions. The open down-triangles
mark the cross sections of the trajectories which did not scission dur-
ing 500×10−21 s. The filled squares and triangles are the experimental
values of the fusion21 and evaporation residue cross sections for the re-
action 16O + 208Pb.

is indicated on the y-axis, and deformation of the target — on
the x-axis. The negative values of α2 correspond to the oblate
shapes. The mean value of deformation was shown in Figure 1
as a function of the distance r between the target and projectile.

4. The Evolution of Composite System

First of all, we have to define the initial shape of the mono
system. The α parameter was put equal to 1, which corresponds
to touching configuration with zero neck. Then for each trajec-
tory we fix by the Neimann (“hit and miss”) method the defor-
mations of the colliding ions, see bottom of Figure 3. These
two deformations define the elongation of the whole system and
the target to projectile mass ratio defines the asymmetry of the
whole system. For given elongation and asymmetry we found
numerically the values of the asymmetry parameter α1 and the
neck parameter α4. After that, we used the same procedure and
distribution from the top part of Figure 3 and defined of the ex-
citation energy E∗

int and angular momentum of the mono system.
All this information was used as input data for calculation of

the evolution of the mono system, eq 2. For given α, α1, and
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α4, the Coulomb, surface, and rotational energy of the mono
system was calculated (the rigid body moment of inertia was
used). The initial excitation energy defines the temperature of
the system and, consequently, the damping of the shell effects.
Besides, we assumed that the collective kinetic energy is given
by the relation

Ekin = Etot −Vpot −E∗
int. (5)

Here Etot is the total energy defined from the initial kinetic en-
ergy of ions and reaction Q value, Vpot — potential energy for
given collective variables and temperature.

The eq 2 were solved numerically. From the solution of eq 2
it follows that the system can break apart practically at once or
“travel” for some time on the surface shown in Figure 2. This
“travel” can lead either to fusion or fission. The computed fu-
sion and fission cross sections are shown in Figure 4 together
with experimental values for the fusion cross section. One can
see that computed and experimental values of fusion cross sec-
tion are close to each other only for high energy region. When
the energy of colliding ions is close to the fusion barrier, one
should take into account of the tunneling possibility through the
barrier. In the present work such possibility was not taken into
account since the approach developed in Reference 9 and used
here considers only processes with the energy above a fusion
barrier.

Now we would like to discuss the problem which events
should be considered as true fission and which — as quasi-
fission. The results presented in Figure 4 were obtained in the
following way. The whole region of deformation of compact
system was divided into three parts: the first part is the region
between the shape with zero neck (touching point, α = 1.0) and
vertical line α∼ 0.94 shown in Figure 2. This line shows the de-
formation where the liquid drop loses its stability with respect
to scission.19 I.e., the system moving from the ground state sep-
arates into two fragments as soon as it crosses the line α ∼ 0.94.
For the motion in opposite direction from α = 1.0 the system be-
comes stable to scission as soon as it crosses the line α ∼ 0.94.
So, in our considerations, all the trajectories which cross the line
α∼ 0.94 give contribution to the fusion cross section. If the sys-
tem scissions before α = 0.94, such event would correspond to
deep inelastic collisions which are of no interest for the present.

The second region of interest is 0.83 ≤ α ≤ 0.94. The value
α = 0.83 corresponds to the fission barrier (for symmetrical
shape). So, if the trajectory crosses the line α = 0.83, such
events are considered as the fission events. The other trajectories
which go back before α = 0.83 are quasi-fission or fast-fission
events.

Why are trajectories with minimal parameter α = 0.83 the fis-
sion trajectories? Let us look at Figure 5. The top panel shows
the two time distributions of the decay events. The solid curve
presents the decay time distribution for all trajectories taken
into account. The curve with symbols shows the distribution
of events with minimal deformation less that α = 0.83. One can
see that all events with very short evolution time are excluded.
The evolution time for this events is shorter than 10×10−21 s.
But it is the time of reaction of the deep inelastic collision. So,
we get the events with a long time evolution. The fission events
are the same events. At the same time, the events longer than
150×10−21 s are practically absent. Such events can be consid-
ered as contributing to the evaporation residue formation. The
cross section of these events is shown by open down-triangles in
Figure 4. We would consider these data as an upper estimate for
the evaporation residue cross section.

Another confirmation that the events with the evolution time
longer then 150×10−21 s are the fission events, could be found
looking at the mass-energy distribution of the fragments. In the
distribution shown in the middle part of Figure 5 all the tra-
jectories are taken into account. The distribution shown in the
lower part includes only the trajectories with minimal deforma-

Figure 5. Upper panel: The distribution of decay events on the reaction
time. Solid line — all trajectories are taken into account, line with
symbols — the contribution from trajectories with minimal deformation
less than α = 0.83, the fission trajectories. Lower panels: Mass-energy
distribution of the fragments. Middle panel — all trajectories are taken
into account. Bottom — the contribution from trajectories with minimal
deformation less than α = 0.83, the fission trajectories.

Figure 6. The distribution of the fission fragments and neutron multi-
plicity on the fragment mass. The initial energy of ions is 78 MeV (top)
and 90 MeV (bottom). The left y-axis — fragments yield, right y-axis
neutron yield. The heavy dots (the fragment mass distribution) and line
with the full squares (neutrons) show the experimental values.23 The
histogram and line with the open squares show the calculated values,
accordingly of the fragment mass distribution and of the neutrons.

tion smaller than α = 0.83. We can see that the lower part of Fig-
ure 5 differ from the middle one drastically. All the events with
large asymmetry of fragments disappeared, because the short
time is not enough for deep changes of the nuclear structure.
Only the central part of distribution have survived when we ex-
clude a short time events. Note that the exactly such type of
distribution is observed in the fission experiments.22

One more argument could be given by the mass distribution
of fission fragments and corresponding neutron multiplicities,
see Figure 6. Here we include the trajectories with evolution
time larger than 10×10−21 s or only the trajectories shown at
the bottom part of Figure 5. We can see that for the energy
Elab = 90 MeV, the computed results reproduce rather well the
experimental data for the mass distribution and neutron multi-
plicity. For smaller energy Elab = 78 MeV the agreement is not
so good. The energy Elab = 78 MeV is practically equal to fusion
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Figure 7. The distribution of decay events with respect to the smallest
reached deformation. Top — the decay events. Middle — the neutrons
evaporated from all trajectories (solid line), from the trajectories with
deformation smaller than α = 0.94 (line with triangles), and from the
trajectories with deformation smaller than α = 0.64 (line with squares).
Bottom — the mean number of evaporated neutrons per decay.

barrier in the entrance channel. As it was mentioned already,
the computed touching cross section in this case is smaller than
the experimental value, see Figure 4. Very likely, for this en-
ergy one should account for the tunneling through the barrier.
Nevertheless, the mass distribution is reproduced rather well.

In case Elab = 78 MeV, the excitation energy is very small and
shell effects lead to the “shoulders” in the mass distribution cor-
responding to mass asymmetric fission. One can see that the
“shoulders” are reproduced by the computations. The computed
neutron multiplicity is somewhat smaller than the experimental
value. There is even some disagreement in the dependence of
neutron multiplicity on the mass of fission fragment. Whereas
experimental values show some minimum for mass symmetric
fission, the computed results are rather independent of the frag-
ment mass.

Figure 7 shows the dependence of the decay events and
the number of evaporated neutrons at the smallest deformation
reached by trajectory. The panel (a) shows the distribution of all
decay events. This distribution has a main bump in the region of
α∼ 1 (short time events or of the deep inelastic events). The po-
sition of the second bump is in barrier region. Many trajectories
can not cross the barrier. The main part of the fission trajectories
returns from barrier region and minor part of the all trajectories
crosses the barrier and go to ground state.

The panel (b) shows of distribution of the positions where the
neutrons were evaporated. The solid line include the neutrons
evaporated from all trajectories, naturally that this distribution
is very similar to the distribution of the panel (a). The line
with triangles shows the neutrons evaporated from trajectories
with minimal deformation smaller than α = 0.94, in other words
these are neutrons from the fusion trajectories. And the line with
squares presents the neutrons evaporated from “pure” fission tra-
jectories, with minimal deformation smaller than α = 0.64. This
distribution is very close to a uniform one. It means that the tra-
jectories on which a lot of neutrons are evaporated before the
barrier can not cross it. This conclusion is supported by the
panel (c). Here we show the number of the neutrons per decay
events versus the position of the minimal deformation. In other
words, this is the ratio of the data from the middle and top pan-
els (all trajectories are included). The black symbols correspond
to the energy Elab = 78 MeV and the open symbols — to energy
Elab = 90 MeV.

5. Summary

We have computed the fusion and fission cross section within
the approach based on Langevin equation both for entrance and
fission channels. The evaporation residue cross section is also
estimated. The mass-energy distributions of the fragments and
the dependence of neutron multiplicities on the fragment mass
is obtained. The computed results are in good agreement with
the experimental data.

The analysis of the numerical results allows us to make the
conclusion that the classical compound nucleus is not formed
during the collision. At the same time, the distribution of frag-
ments is the same as for the fission of compound nucleus. More-
over, the main part of trajectories does not reach the deforma-
tions smaller than the barrier and the main part of neutrons are
evaporated around the barrier. In the result of neutron evapora-
tion, the system loses considerable part of kinetic energy, and
can not overcome the barrier.

Thus, in order to reach the ground state, the system should
have enough energy above the Coulomb barrier. In the synthesis
of superheavy elements, these experiments were successful in
which system evaporated 2–3 neutrons before it reached ground
state.24

The authors realize that the results are obtained for one con-
crete reaction and other fusion-fission reaction should be de-
scribed. Also the agreement with the experiment for near the
barrier energy is not very good. The investigations in this direc-
tions would be the subject of future studies.
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