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Nuclear Shapes in Complex Fission Phenomena
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We present a method for finding very general reflection asymmetric equilibrium (saddle-point) nuclear shapes, as
solutions of an integro-differential equation, without giving a shape parametrization. By introducing phenomeno-
logical shell corrections one obtains minima of deformation energy for binary fission of parent nuclei 238U, 232,228Th
at a non-zero mass asymmetry, leading to the same mass number of the heavy fragment A1 = 125. Applications for
fission into more than two and three fragments are also illustrated.

1. Introduction

The permanent distortion from a sphere of a given nucleus
in its ground state or the change of deformation during a nu-
clear process (e.g. fission or fusion) may be described in terms
of collective coordinates. One has to choose a function with
a number of parameters as low as possible, which in the same
time allows to determine the most important shapes of the nu-
clear surface. There are many such parametrizations described
in the literature (see various chapters of the books1,2 and ref-
erences therein). The surface equation, determined by a set of
deformation coordinates, is frequently used to calculate the po-
tential energy surfaces (PES) which in turn can be applied to find
the nuclear deformations and fission barriers, to explain shape
isomers, to obtain indications about mass asymmetry in fission,
to calculate half-lives against various decay modes or to study
multidimensional tunneling,3 to extend the nuclear chart in the
region of superheavy nuclei, etc.

Since the early days of development of nuclear fission, the
shapes during the deformation process from one parent nucleus
to the final fragments, have been intensively studied either stat-
ically or dynamically.6,7 Within a liquid drop model (LDM) all
nuclear shapes in the ground-state are spherical and the fission
fragment mass distributions are symmetric, in contrast to real-
ity. Permanent nuclear deformations and fission fragment mass
asymmetry can be explained by combining the collective (liq-
uid drop-like) and single particle properties in the framework
of macroscopic-microscopic Strutinsky’s method. By using the
two center shell model8 to describe the single-particle states,
one can follow the shell structure all the way from the origi-
nal nucleus, over the potential barriers, up to the final stage of
separated fragments. Particularly important points on a poten-
tial energy surface are those corresponding to the ground-state,9

saddle-point(s),10,11 and scission point.12,13

The progress in understanding the connection between scis-
sion configurations and the binary fission mechanisms and mass
yield was recently reviewed.14 A systematic analysis of a large
body of experimental data (see also Reference 15) on total ki-
netic energy (TKE) of fission fragments confirmed the existence
of two fission modes in the region of actinides: one with low
TKE components and elongated scission shapes leading to a
symmetric mass yield, and the other one with high TKE compo-
nents and compact shapes connected to a shell-influenced asym-
metric yield. Two kinds of fission paths were assumed on this
basis: with lower barrier going through reflection asymmet-
ric compact configurations, and with higher barrier and sym-
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metric scission configurations. The invariance of scission de-
formation β was demonstrated16 and new formulas replacing
Viola systematics were given. The deformation was defined
by β = D(A1,A2)/D0(A1,A2) where D = Z1Z2e2/T KE(A1,A2)
is the distance between charge centers of the fragments and D0

is the distance between centers of two touching spherical frag-
ments with radii Ri = 1.17A1/3

i fm. For the first time it was exper-
imentally found17 that scissioning nuclei with a given elongation
lead to a given shape of the fragment mass yield curve. By in-
cluding into analysis the region of heaviest nuclei with measured
TKE (heavy Fm, Bk, No, Cf, Lr, and Rf isotopes) the existence
of three types of shape elongations was clearly shown: LDM
governed mass symmetric elongated shape (β � 1.65); mass
asymmetric deformation (β � 1.53), and shell-influenced mass
symmetric deformation (β � 1.43).

Important achievements have been also reached in another
experimental field including rare phenomena, where new char-
acteristics of fission process18 and new decay modes19 (α and
10Be accompanied cold fission of 252Cf, double fine structure
and triple fine structure in binary and ternary fission, respec-
tively) were discovered during the last years by using triple-γ co-
incidences in a large array of Germanium Compton-suppressed
detectors (the famous GAMMASPHERE). The increased sensi-
tivity of such measurements could allow to detect in the future
other rare phenomena, as multicluster accompanied fission20 and
to continue to search for new kinds of quasimolecular states.21

In a statical approach, the equilibrium nuclear shapes are usu-
ally obtained by minimizing the energy functional on a certain
class of trial functions representing the surface equation. The
simplest shape one can imagine, still allowing to describe es-
sential features of a cluster decay process is the spherical one.2

Even for a particle-accompanied fission one can imagine21 a
single-deformation parametrization based on spherical shapes.

The purpose of this paper is to present a method allowing to
obtain a very general reflection asymmetric saddle-point shape
as a solution of an integro-differential equation without a shape
parametrization apriori introduced. This equation was derived
by minimizing the potential energy with constraints (constant
volume and given deformation parameter). The method allows
to obtain straightforwardly the axially-symmetric surface shape
for which the liquid drop energy, ELDM = Es +EC, is minimum.
By adding the shell corrections δE to the LDM deformation en-
ergy, Edef = ELDM + δE, we succeeded to obtain minima at a
finite value of the mass-asymmetry parameter. We use a phe-
nomenological shell correction. Results for binary fission of
parent nuclei 238U and 232,228Th are presented. The minima of
the saddle-point energy occur at nonzero mass asymmetry pa-
rameters which happens to lead to the same mass number of the
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heavy fragment, A1 = 125, for all fissioning nuclei mentioned
above. Applications for fission into more than two and three
fragments are also illustrated.

2. Saddle Point

Let us consider a nuclear system with a shape specified by
a set of n generalized coordinates {qi}. For an equilibrium
(ground-state or saddle-point) shape22 the deformation energy
E = E(q1,q2, ...,qn) has an extremum, defined by ∂E/∂qi = 0,
(i = 1,2, ...,n). In a LDM the ground state, characterized by the
lowest minimum of the potential energy, always corresponds to
a spherical shape. One may define a fission valley on the PES in
a multidimensional space of deformation parameters, as a con-
ditional minimum ∂E/∂qk = 0, (i=1, 2, ..., k-1, k+1, ..., n) with
the constraint qk = q0

k for different values q0
k . The maximum

value on this minimum energy determines the saddle-point posi-
tion, at which all eigenvalues of the symmetric curvature matrix
Ki j = ∂2E(q)/(∂qi∂qj) have a positive sign, except one. For two
deformation coordinates23 at the saddle point∣∣∣∣∣∣∣∣∣

∂2E
∂q2

1

∂2E
∂q1∂q2

∂2E
∂q2∂q2

∂2E
∂q2

2

∣∣∣∣∣∣∣∣∣
< 0 . (1)

The simplest LDM potential energy vs. one deformation pa-
rameter along the fission path is a smooth curve with a mini-
mum at the ground state and a maximum at the saddle point.
Then it decreases continuously going through the scission point,
down to the self energy of the fragments at infinite separation
distance. By representing this quantity for a heavy nucleus vs.
the mass asymmetry coordinate in a transverse direction at the
saddle point we also get a smooth curve with a minimum be-
tween two maxima, called Businaro-Gallone mountains. The
saddle point is lying on the bottom of the valley separating these
mountains.

A conditional saddle point is defined by imposing one or sev-
eral constraints. Of particular interest in fission is the constraint
of determined mass asymmetry, η = η0. If η is one of the gen-
eralized coordinates the problem is simplified because one takes
η = constant. In general η depends on q, and the generalization
of the variational equation to the equilibrium with constraints
leads to

∂E
∂qi

+λ ∂η
∂qi

= 0, i = 1,2, ...,n (2)

where λ is a Lagrange multiplier.
There is no need to consider any reflection asymmetry or non-

axiality in the calculation of saddle point shapes within LDM,
because the energy increases in the presence of both kinds of
deviations from symmetry. The parametrization of Legendre
polynomial expansion with even-order deformation parameters
α2n up to n = 18 was used.4 For low fissility, X , the saddle point
shapes are very similar to two tangent spheres, hence it is more
difficult to be described with a small number of deformation
coordinates. By increasing fissility a neck develops between the
two symmetrical fragments. The length increases up to X = 0.67
and in the same time the neck radius becomes larger. The best
accuracy was obtained at larger fissilities, close to X = 1, for
which the saddle point shapes are not very different from a sin-
gle sphere.

3. The Model

We are looking for a nuclear surface equation with axial sym-
metry around the z axis, expressed as ρ = ρ(z) in cylindrical co-
ordinates, which minimizes the potential energy of deformation
with two constraints: volume conservation, and given deforma-
tion parameter, α, assumed to be an adiabatic variable. With re-

spect to spherical shape (superscript 0), the deformation energy
is defined as

Edef(α)−E0 = (Es −E0
s )+(EC −E0

C)+δE −δE0

= E0
s [Bs −1+2X(BC −1)]+δE −δE0 (3)

where E0
s = as(1 − κI2)A2/3 and E0

C = aCZ2A−1/3 are energies
corresponding to spherical shape and I = (N − Z)/A. The rel-
ative surface and Coulomb energies Bs = Es/E0

s , BC = EC/E0
C

and the shell correction δE(α) are functions of the nuclear
shape. The dependence on the neutron and proton numbers
is contained in E0

s , the fissility parameter X = E0
C/(2E0

s ) =
[3Z2e2/(5R0)]/2[as(1−κI2)A2/3], as well as in shell correction
of the spherical nucleus δE0. From a fit to experimental data on
nuclear masses, quadrupole moments, and fission barriers, the
following values of the parameters have been obtained:24 as =
17.9439 MeV, κ = 1.7826, aC = 3e2/(5r0) = 0.7053 MeV. The
radius of spherical nucleus is R0 = r0A1/3 with r0 = 1.2249 fm,
and e2 = 1.44 MeV·fm is the square of electron charge. Calcu-
lation of δE will be outlined below.

The corresponding variational problem can be reduced to the
following equation

ρρ′′−ρ′2 − [λ1 +λ2|z|+10XVs(z,ρ)]ρ(1+ρ′2)3/2 −1 = 0 (4)

where ρ′ = dρ/dz, ρ′′ = d2ρ/dz2, and Vs is the Coulomb poten-
tial on the nuclear surface. We used the following relationships
for the principal radii of curvature R1 = τρ, R2

−1 = −ρ′′/τ3,
in which τ2 = 1 + ρ′2. In eq 4 λ1 and λ2 are Lagrange multi-
pliers corresponding to the constraints of volume conservation
(or given mass asymmetry if the volume is conserved in each
“half” of the nucleus) and determined value of deformation pa-
rameter α, defined as the distance between centers of mass of
the fragments lying at the left hand side and right hand side of
the plane z = 0, respectively: α = |zc

L|+ |zc
R|. This definition al-

lows to reach all intermediate stages of deformation from one
parent nucleus to two fragments by a continuous variation of its
value. The position of separation plane, z = 0, is given by the
condition: (dρ/dz)z=0 = 0. Lengths are given in units of R0,
Coulomb potential in units of Ze/R0, and energy in units of the
surface energy E0

s . One can calculate for every value of α the
deformation energy Edef(α). The particular value αs for which
dEdef(αs)/dα = 0 corresponds to the extremum, i.e. the shape
function describes the saddle point (or the ground state), and
the unconditional extremum of the energy is the fission barrier.
It can also be obtained by taking λ2 = 0 in eq 4. The other sur-
faces (for α 	= αs) are extrema only with condition α = constant.
In this way one can compute the deformation energy function of
two variables: elongation and mass asymmetry.

The Coulomb potential on the surface depends on the func-
tion ρ(z), hence eq 4 is an integro-differential one, as Vs is ex-
pressed by an integral on the nuclear volume. One has indeed,
for the general case of non-axial symmetry in cylindrical coor-
dinates (ρ,ϕ, z)

EC = ρe

5

Z z2

z1

dz
Z 2π

0

(
ρ2 − z

2
∂ρ2

∂z

)
V dϕ (5)

where ρ = ρ(z,ϕ) is the nuclear surface equation, z1 and z2 are
the intersections of the surface with Oz axis, and V is the elec-
trostatic potential on the nuclear surface.

For axial-symmetry the shape-dependent, dimensionless sur-
face term is proportional to the surface area:

Bs = Es

E0
s

= d2

2

+1Z

−1

[
y2 + 1

4

(
dy2

dx

)2
]1/2

dx (6)

where y = y(x) is the surface equation in cylindrical coordi-
nates with −1,+1 intercepts on the symmetry axis, and d =
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(z2 − z1)/2R0 is the seminuclear length in units of R0. Similarly,
for the Coulomb energy25 one has

Bc = 5d5

8π

+1Z

−1

dx

+1Z

−1

dx′F(x,x′) , (7)

F(x,x′) = a−1
ρ {yy1[(K −2D)/3]

×
[

2(y2 + y2
1)− (x− x′)2 + 3

2
(x− x′)

(
dy2

1

dx′
− dy2

dx

)]
+K

×
{

y2y2
1/3+

[
y2 − x− x′

2
dy2

dx

][
y2

1 − x− x′

2
dy2

1

dx′

]}
} . (8)

K, K′ are the complete elliptic integrals of the 1st and 2nd kind

K(k) =
π/2Z

0

(1− k2sin2t)−1/2dt; K′(k) =
π/2Z

0

(1− k2sin2t)1/2dt

(9)
and a2

ρ = (y+ y1)2 +(x− x′)2, k2 = 4yy1/a2
ρ, D = (K −K′)/k2.

We add the shell correction δE(α) to the LDM energy. The
phenomenological model26 is adapted after Reference 24. At a
given deformation we calculate the volumes of fragments and
the corresponding numbers of nucleons Zi(α), Ni(α) (i = 1,2),
proportional to the volume of each fragment. Then we add for
each fragment the contribution of protons and neutrons

δE(α) = ∑
i

δEi(α) = ∑
i

[δEpi(α)+δEni(α) ] (10)

given by
δEpi = Cs(Zi); δEni = Cs(Ni) (11)

where
s(Z) = F(Z)/Z−2/3 − cZ1/3 (12)

and similar equation for s(N).

F(n) =
3
5

[
N5/3

i −N5/3
i−1

Ni −Ni−1
(n−Ni−1)−n5/3 +N5/3

i−1

]
(13)

where n ∈ (Ni−1,Ni) is the current number of protons (Z) or neu-
trons (N) and Ni−1,Ni are the nearest magic numbers. The pa-
rameters c = 0.2, C = 6.2 MeV were determined by fit to exper-
imental masses and deformations. The dependence on deforma-
tion α is given by Reference 27

δE(α) = C
2

{
∑

i

[s(Ni)+ s(Zi) ]
Li(α)

Ri

}
(14)

where Li(α) are the lengths of fragments along the symmetry
axis. During the deformation process, the variation of separa-
tion distance between centers, α, induces the variation of the
geometrical quantities and of the corresponding nucleon num-
bers. Each time a proton or neutron number reaches a magic
value, the correction energy passes through a minimum, and it
has a maximum at midshell.

The integration method used to solve eq 4 is based on the
weak dependence of Coulomb energy on the nuclear shape. It is
invariant under subtraction from Vs of a linear function because
λ1 and λ2 are arbitrary constants. The extremal surface depends
on the quantity with which the Coulomb potential on the nuclear
surface differs from the function λ1 +λ2|z|, where the constants
λ1,λ2 could be chosen in a way to minimize this difference. In
the next iteration one uses the solution ρ(z) previously deter-
mined.

The following boundary conditions have to be fulfilled

ρ(z1) = ρ(z2) = 0 , (15)

lim
z→z1

dρ(z)/dz = ∞ ; lim
z→z2

dρ(z)/dz = −∞ (16)

where z1 and z2 are the intercepts with z axis at the two tips.
Equation 16 are called transversality conditions. For reflection
symmetric shapes z1 = −z2 = −zp, hence one can consider only
positive values of z in the range (0,zp). In order to get rid of
singularities in eq 16 it is convenient to introduce a new function
u(v) substituting ρ(z)

u(v) = A2ρ2(z(v)) (17)

where
z(v) = zp − v/A (18)

dz/dv = −1/A, u′ = du/dv = 2A2ρ(dρ/dz)dz/dv = −2Aρρ′,
ρ =

√
u/A, u′2 = 4uρ′2, 1+ρ′2 = u′2/(4u)+1, u′′ = d2u/dv2 =

d(u′)/dv = −2A[dρ(z(v))/dv]dρ/dz − 2Aρd(ρ(z(v))/dz =
−2A(dρ/dz)(dz/dv)(dρ/dz) − 2Aρ(d2ρ/dz2)dz/dv = 2ρ′2 +
2ρρ′′. By substituting into eq 4 one has

u′′−2− 1
u

{
u′2 +

(
5XVs

2A + λ1 +λ2zp

4A

− λ2v
4A2

)
(4u+u′2)3/2

}
= 0. (19)

Now we can introduce a linear function of v by adding and
subtracting a + bv to 5XVs/2A and define Vsd as deviation of
Coulomb potential at the nuclear surface from a linear function
of v

Vsd = 5X
2AVs −a− vb (20)

in which the linear term may be considered an external potential
of deformation

a = 5X
2AVs(v = 0) , (21)

b =
[

5X
2AVs(v = vp)−a

]
/vp . (22)

Consequently one has

u′′−2− 1
u

{
u′2 +

[(
λ1 +λ2zp

4A +a

)

+v

(
b− λ2

4A2

)
+Vsd

]
(4u+u′2)3/2

}
= 0 . (23)

As one can see from eq 23, there are new constants A, zp related
to eq 17, besides the previous ones λ1 and λ2. Nevertheless the
solution of eq 23 is not dependent on each parameter; important
are the linear coefficients in v of the binomial term within paren-
theses. By equating with 1 the coefficient of v, one can establish
the following link between parameter A and the Lagrange mul-
tiplier λ2

A2 = λ2/4(b−1) . (24)

In this way u(v) is to be determined by equation

u′′ = 2+
1
u
[u′2 +(v−d +Vsd)(4u+u′2)3/2] (25)

containing a single parameter d. From eq 15, 17 one can deduce
at the limit

u(0) = 0, u′(0) = 1/d (26)

and eq 16 is satisfied if zp = vp/A is obtained from

u′(vpn) = 0 . (27)

The subscript n was introduced as a consequence of the fact that
the number of points vpn (depending on d and other parameters),
satisfying eq 27 is larger than unity. In other words the func-
tion u(v) has the multiplicity of extremes and the subscript n
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counts the number of extremes. To various values of n corre-
spond branches of solution of eq 25, describing different classes
of shapes. Thus for n = 1 there is no neck, for n = 2 there is one
neck, n = 3 gives two necks, etc. In order to solve eq 25 one
starts with given values of parameters d and n. For reflection
symmetric shapes dL = dR and nL = nR. Although parameter A
is not present in eq 25 we have to know it in order to obtain the
shape function 17. From the volume conservation one has

A =
{

3
2

Z vpn

0
u(v)dv

}1/3

. (28)

After solving the integro-differential equation one can find
the deformation parameter α = zc

L + zc
R, where

zc
L =

Z 0

z1

|z|ρ2(z)dz

/Z z2

z1

ρ2(z)dz = 3
2
A−4

Z vp

0
(vp − v)u(v)dv

(29)
depends on d. From α(d), one can obtain the inverse function
d = d(α).

For reflection asymmetrical shapes we need to introduce an-
other constraint: the asymmetry parameter, η, defined by

η = ML −MR

ML +MR
= A1 −A2

A1 +A2
(30)

should remain constant during variation of the shape function
ρ(z). Consequently eq 25 should be written differently for left
hand side and right hand side. Now dL is different from dR, and
so are the parameters AL and AR. They have to fulfil matching
conditions ρL(z = 0) = ρR(z = 0) hence

u1/2
L (vp)/AL = u1/2

R (vp)/AR . (31)

The similar condition for derivatives ρ′(z) in z = 0, ρ′
L(z = 0) =

ρ′
R(z = 0) = 0, is automatically satisfied due to eq 27. The sec-

ond derivative ρ′′(z) can have a discontinuity in z = 0 if dL 	= dR.
The parameters AL and AR are easily expressed in terms of η, if
we write eq 30 as

ML =
2π
3

(1+η) = πA−3
L

Z vp

0
uL(v)dv , (32)

MR =
2π
3

(1−η) = πA−3
R

Z vp

0
uR(v)dv . (33)

We assume that ML + MR is equal to the mass of a sphere with
R = 1. From eq 32, 33 we obtain

AL = (1+η)−1/3AL0 , (34)

AR = (1−η)−1/3AR0 , (35)

where we introduced notations similar to eq 28

AL0(R0) =
{

3
2

Z vp

0
uL(R)(v)dv

}1/3

. (36)

The shape of a nucleus with given mass asymmetry, η, is com-
pletely determined by eq 34–36; the quantities uL(vp) and uR(vp)
are obtained as solutions of the differential eq 25. Again, the de-
formation α is the distance between centers of mass of the left
hand side and right hand side.

There is an alternative way to obtain asymmetric shapes.
When we previously discussed the energy minimization with
the constraint of deformation conservation, we observed that be-
sides symmetrical solutions for which dL = dR and nL = nR (nL(R)

is the number of solutions of eq 27 for the left hand side and right
hand side), there are also solutions with nL 	= nR, meaning shapes
with different number of necks on the two sides separated by the
plane z = 0. The parameters dL and dR are linked through the

TABLE 1: Mass number of the heavy fragment corresponding to
the minimum of the saddle-point energies in Figure 4.

Nuclei dL −dR η A1
238U 0.04 0.04988 124.93

232Th 0.06 0.07517 124.72
228Th 0.08 0.09512 124.84

condition of continuity of the second derivative ρ′′(z) in z = 0,
which (using eq 25) may be written as

(dL − vpL)u1/2
L (vpL) = (dR − vpR)u1/2

R (vpR) . (37)

This equation establishes the relationship between dL and dR.
Unlike the first approach in which dL and dR are free parameters
determining α and η, this time we have a class of shapes with
only one parameter; at a given deformation, the mass asymme-
try is perfectly determined. This is a drawback when we in-
tend to study the variation of deformation energy with α and η.
Moreover, these kind of shapes have a low chance to be met in
practice because of higher value of the energy compared to sym-
metrical shapes with the same parameter d. Generally speaking
the solutions of the variational problem are obtained for inde-
pendent values (not related by eq 37) of parameters nL 	= nR, dL

and dR. It should be noted that the energies of the corresponding
shapes will be higher than those of shapes with the same values
of dL and dR but with nL = nR.

In order to solve the eq 25 we employ the method of suc-
cessive approximations. In the first iteration one obtains the
solution of differential equation in which Coulomb potential
at the nuclear surface is assumed to be a linear function of z
(or v), i.e. if one assumes initially Vs = 0. After solving the
equation in such a manner, one calculates the parameters A,
a, b, which depend on the Coulomb potential and its deviation
Vsd from a linear function. The quantity Vsd obtained in such
a way is introduced in eq 25 and the whole procedure is re-
peated until the desired accuracy is reached. In every iteration
the equation is solved with the 2nd order Runge-Kutta method
with constant integration step. The initial value u′′(v = 0) can be
found straightforwardly from eq 25 by removing the indetermi-
nation in the point v = 0, u′′(0) = −2+(1−b+g)/2d2 , where
g = [5X/(2A)][dVs(v)/dv]v=0. The differential equation is inte-
grated up to the point v = vpn, in which the first derivative u′(vpn)
vanishes. The number n of extremal values of u(v) (equal to the
number of necks plus one unit) is an external parameter. The
value vpn was determined by linear interpolation between two
neighbouring points in which u′ has opposite signs.

4. Results

In Figure 1 we present reflection symmetric nuclear shapes
for binary fission of a nucleus with the fissility parameter X =
0.6 (e.g. 170Yb), obtained for nL = nR = 2 (one neck), dL = dR =
1.4, 1.5, 1.7, and 1.91 (for which α = 1.314, 1.644, 2.100, and
2.304) and a vanishing mass asymmetry η = 0. The saddle point
(maximum value of the conditioned deformation energy mini-
mum) is obtained for dL = 1.91, at which the shape is deformed
and necked-in. The deformation, α (distance between the mass
centers of fragments in units of radius of the spherical parent
nucleus, R0), was given above.

A comparison between three nuclear shapes at the saddle
point for nuclei with fissilities X = 0.60, 0.70, and 0.82 (cor-
responding to 170Yb, 204Pb, and 252Cf nuclei lying on the line
of β stability) is presented in Figure 2. One can see how the
necking-in and the elongation are decreasing (α = 2.304, 1.822,
and 1.165) when fissility increases from X = 0.60 to X = 0.82,
in agreement with Reference 4. In the limit X = 1 the saddle
point shape is spherical.

Within LDM a nonzero mass asymmetry parameter (see the
shapes from Figure 3) leads to a deformation energy which in-
creases with η as is illustrated in Figure 4, where η is replaced
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Figure 1. Reflection symmetric nuclear shapes obtained by solving
the integro-differential equation for the following values of parameters:
nL = nR = 2; dL = dR = 1.4, 1.5, 1.7, and 1.91 (for which the deforma-
tions in units of R0 are α/R0 = 1.314, 1.644, 2.100, and 2.304) at η = 0.
Binary fission of a nucleus with the fissility X = 0.60 (e.g. 170Yb).

by an almost linear dependent quantity (dL − dR). The reflec-
tion asymmetric shapes plotted in Figure 3, resulted by choosing
the input parameters as follows: nL = nR = 2; dL = 1.40, 1.45,
1.50, and 1.60 while dR = 1.40 was kept constant, and so was
X = 0.60. The increasing deformation energy with mass asym-
metry in Figure 4, refers to different values of fissilities, namely
X = 0.769, X = 0.754, and X = 0.758 for 238U, 232Th, and 228Th,
respectively. By adding the shell corrections δE to the LDM
deformation energy, Edef = ELDM + δE, we succeeded to obtain
the minima shown in Figure 4 at a dL − dR of about 0.04,0.06,
and 0.08 for 238U, 232Th, and 228Th nuclei. Interestingly enough,
the mass number of the heavy fragment which corresponds to
these minima is the same, namely almost A1 = 125 (more ex-
actly 124.93, 124.72, and 124.84). One has indeed the results
presented in Table 1.

On the other hand, for experimentally determined mass asym-
metry28,29 the maximum of the fission fragment mass distribu-
tions is centered on A1 = 140 in a broad range of mass numbers
of parent nuclei. Qualitatively we obtain for the binary cold
fission a similar behaviour. Nevertheless, the numerical discrep-
ancy (125 instead of 140) remains to be explained.

The next result presented in Figure 5 refers to asymmetrical
shapes with multiple necks which are obtained for nL = 4 and
nR = 2. At a given value of dL = 2.39, 2.44, and 2.47 one has

Figure 2. Saddle-point nuclear shapes obtained by solving the integro-
differential equation for the following values of parameters: nL = nR =
2; dL = dR = 1.91, 1.55, and 1.38 and the binary fission fissilities X =
0.60, 0.70, and 0.82 (for which the deformation α/R0 = 2.304, 1.822,
and 1.165) at η = 0.

Figure 3. Nuclear shapes (one reflection symmetric and three reflec-
tion asymmetric) obtained by solving the integro-differential equation
for the following values of parameters: nL = nR = 2; dL = 1.40, 1.45,
1.50, and 1.60 keeping dR = 1.40 and binary fissility X = 0.60. The
mass asymmetry η was automatically changed in such a way.

dR = 1.40, 1.43, and 1.46. The corresponding deformation pa-
rameters in units of R0 are 1.840, 1.977, and 2.060, respectively.
The total deformation energy in units of E0

s increases from 0.135
to 0.148 and 0.152.

The elongated shapes for ternary and quaternary fissions
are shown in Figures 6 and 7. For shapes with three frag-
ments and two necks (nL = nR = 3, see Figure 6), by increas-
ing dL = dR, from 2.25 to 2.80 and 7.00 the deformation in-
creases from 1.650 to 2.306 and 2.730. In the same time the
elongation is initially increased from 5.234 to 5.392 and then
decreased to 5.24; the fragment radii are 0.461/0.814/0.461,
0.592/0.753/0.592, and 0.673/0.659/0.673, leading to de-
creasing energies in units of E0

s from 0.165 to 0.150 and 0.134.
The last configuration with E/E0

s = 0.134 is not far from a “true
ternary-fission” in which the three fragments are almost iden-
tical: 170

70Yb→ 56
23V + 56

23V + 58
24Cr and the Q value is 83.639 MeV.

One may compare the above E/E0
s value with the touching-point

energy of these spherical fragments (Et −Q)/E0
s = 0.239. It is

larger, as expected, because of the finite neck of the shapes in
Figure 6. For α-accompanied fission of 170Yb with two 83

34Se
fragments Q = 87.484 MeV is larger and the touching point en-
ergy (Et −Q)/E0

s = 0.103 is lower. A lower Q = 70.859 MeV
and higher energy barrier (Et −Q)/E0

s = 0.147 is obtained for
10Be accompanied fission of 170Yb with 80

33As fission fragments.
One should stress that we present shapes in Figures 1, 3, 5–7
which are produced for various values of input parameters; only
one of these shapes in every figure corresponds to the saddle-
point. One should not be confused about the unexpected shape
with dL = dR = 2.25 in Figure 6 having a large fragment be-
tween two smaller ones; it was produced due to the low value of
dL = dR.

Figure 4. Saddle-point deformation energy versus mass asymmetry
parameter for binary fission of 238U and 232,228Th nuclei. One can see a
monotonous increase within a pure liquid drop model and minima when
the shell corrections are included.



48 J.Nucl.Radiochem.Sci.,Vol. 3, No. 1, 2002 Poenaru

Figure 5. An alternative way to generate asymmetrical shapes in which
nL �= nR illustrated for nL = 4 and nR = 2. At a given value of dL = 2.39,
2.44, and 2.47 one obtains dR = 1.40, 1.43, and 1.46. The binary fissility
X = 0.60.

Figure 6. Nuclear shapes obtained by solving the integro-differential
equation for nL = nR = 3 and dL = dR = 2.25, 2.80, and 7.00. The binary
fissility X = 0.60.

Figure 7. Nuclear shapes obtained by solving the integro-differential
equation for nL = nR = 4 and dL = dR = 2.30, 2.70, and 4.00. The binary
fissility X = 0.60.

The shapes with four fragments and three necks (nL =
nR = 4) can be seen in Figure 7. When dL = dR increases
from 2.30 to 2.70 and 4.00 the deformation takes the values
2.144, 3.136, and 3.233 and the elongations are 6.077, 6.916,
and 6.252. The fragment radii are 0.408/0.625/0.625/0.408,
0.479/0.632/0.632/0.479, and 0.608/0.616/0.616/0.608, for
which the energies in units of E0

s are 0.188, 0.216, and
0.214, respectively. The last shape, with E/E0

s = 0.214
approaches a fission into almost identical four fragments
170

70Yb→ 42
17Cl + 42

17Cl + 43
18Ar + 43

18Ar. Again the configuration with
aligned spherical fragments in touch is higher in energy:
(Et − Q)/E0

s = 0.324. Even more complex shapes can be ob-
tained by further increasing the values of nL = nR.

5. Conclusions

The method of finding the most general axially-symmetric
shape at the saddle point without introducing apriori a
parametrization (inherently limited due to the finite number
of deformation coordinates), by solving an integro-differential
equation was tested for binary, ternary, and quaternary fission
processes within a pure liquid drop model.

It proved its practical capability in what concerns fission into
two, three, or four identical fragments, for which fission barriers
given by shapes with rounded necks are, as expected, lower than
those of aligned spherical fragments in touch.

Nevertheless, in the absence of any shell correction it is not
possible to reproduce the experimental data, or to give results
for particle-accompanied fission.

By adding (phenomenological) shell corrections we suc-

ceeded to obtain the minima shown in Figure 4 at a finite value
of mass asymmetry for the binary fission of 238U, 232Th, and
228Th nuclei. Moreover, the mass number of the heavy fragment
which corresponds to these minima is the same A1 � 125. A
discrepancy (if any because our result was obtained in the ab-
sence of dissipation, hence it refers to cold fission) remains to
be explained in the future.
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